
Bruno Francisco Martins da Silva

Staged Vector Stream Similarity Search
Methods with an Application to Classified Ad

Retrieval

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática, do Departamento de Informática of PUC-Rio in
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
January 2024

Bruno Francisco Martins da Silva

Staged Vector Stream Similarity Search
Methods with an Application to Classified Ad

Retrieval

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee:

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antonio Luz Furtado
Departamento de Informática – PUC-Rio

Prof. Luiz Andre Portes Paes Leme
UFF

Rio de Janeiro, January 24th, 2024

All rights reserved.

Bruno Francisco Martins da Silva

Graduated in Computer Science from the Federal Rural Uni-
versity of Rio de Janeiro (UFRRJ).

Bibliographic data
Silva, Bruno F. M.

Staged Vector Stream Similarity Search Methods with
an Application to Classified Ad Retrieval / Bruno Francisco
Martins da Silva; advisor: Marco Antonio Casanova. – 2024.

60 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Informática – Teses. 2. Busca. 3. Indexação. 4.
Similaridade. 5. Anúncios. 6. Redis. 7. HNSW. I. Casanova,
Marco A.. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

Acknowledgments

I would like to express my gratitude to my Advisor, Prof. Marco Antonio
Casanova, who brightly guided me through this research.

I would also like to thank my friend, João Pedro, who has shared with
me all the tough and bright moments during this journey, my parents, Alzira
de Jesus Martins da Silva and Marco Antonio da Silva, for their long-term
support.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Abstract

Silva, Bruno F. M.; Casanova, Marco A. (Advisor). Staged Vector
Stream Similarity Search Methods with an Application to Clas-
sified Ad Retrieval. Rio de Janeiro, 2024. 60p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

A vector stream can be modeled as a sequence of pairs ((v1, t1). . . (vn, tn)),
where vk is a vector and tk is a timestamp such that all vectors are of the
same dimension and tk < tk+1. The vector stream similarity search problem is
defined as: “Given a (high-dimensional) vector q and a time interval T , find a
ranked list of vectors, retrieved from a vector stream, that are similar to q and
that were received in the time interval T”. This dissertation first introduces
a family of vector stream similarity search methods that do not depend on
having the full set of vectors available beforehand but adapt to the vector
stream as the vectors are added. The methods generate a sequence of indices
that are used to implement approximated nearest neighbor search over the
vector stream. Then, the dissertation describes an implementation of a method
in the family based on Hierarchical Navigable Small World graphs. Based on
this implementation, the dissertation presents a Classified Ad Retrieval tool
that supports classified ad retrieval as new ads are continuously submitted.
The tool is structured into a main module and three auxiliary modules, where
the main module is responsible for coordinating the auxiliary modules and for
providing a user interface, and the auxiliary modules are responsible for text
and image encoding, vector stream indexing, and data storage. To evaluate the
tool, the dissertation uses a dataset with approximately 1 million records with
descriptions of classified ads and their respective images. The results showed
that the tool reached an average precision of 98% and an average recall of 97%.

Keywords
Search; Indexing; Similarity; Ads; Redis; HNSW.

Resumo

Silva, Bruno F. M.; Casanova, Marco A.. Metodos de Busca por Simi-
laridade em Sequências Temporais de Vetores com uma Aplica-
ção à Recuperação de Anúncios Classificados. Rio de Janeiro, 2024.
60p. Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Uma sequência temporal de vetores (“vector stream”) pode ser modelada
como uma sequência de pares ((v1, t1). . . (vn, tn)), onde vk é um vetor e tk é
carimbo de tempo tais que todos os vetores são da mesma dimensão e tk

< tk+1. O problema de busca por similaridade em sequências temporais de
vetores é definido como: “Dado um vetor (de alta dimensão) v e um intervalo
de tempo T , encontre uma lista ranqueada de vetores, recuperados de uma
sequência temporal de vetores, que sejam similares a v e que foram recebidos
dentro do intervalo de tempo T”. Esta dissertação primeiro introduz uma
família de métodos de busca por similaridade em sequências temporais de
vetores que não dependem da sequência completa, mas se adaptam à medida
que os vetores são incluídos na sequência. Os métodos geram uma sequência
de índices, que são então usados para implementar uma busca aproximada
do vizinho mais próximo na sequência temporal de vetores. Em seguida, a
dissertação descreve uma implementação de um método da família baseado em
Hierarchical Navigable Small World graphs. Utilizando esta implementação,
a dissertação apresenta uma ferramenta de busca de anúncios classificados
que oferece recuperação de anúncios à medida que usuários continuamente
submetem novos anúncios. A ferramenta é estruturada em um módulo principal
e três módulos auxiliares, sendo que o módulo principal é responsável por
coordenar os módulos auxiliares e prover uma interface para o usuário, e os
módulos auxiliares são responsáveis pela codificação dos textos e imagens em
vetores, a indexação dos vetores, e o armazenamento dos textos, imagens e
vetores. Por fim, para avaliar a ferramenta, a dissertação utiliza um conjunto
de aproximadamente 1 milhão de registros com as descrições de anúncios
classificados e suas imagens. Os resultados mostraram que a ferramenta atingiu
uma precisão de 98% e um recall de 97%.

Palavras-chave
Busca; Indexação; Similaridade; Anúncios; Redis; HNSW.

Table of contents

1 Introduction 10

2 Background and Related Work 13
2.1 Transformers 13
2.2 Convolutional Neural Networks. 13
2.3 Vector Indexing Methods, Libraries, and Search Engines 15

3 The Family of Staged Vector Stream Similarity Search
Methods 20

3.1 Staged Vector Stream Similarity Search Methods 20
3.2 Implementations based on IVFADC 23
3.3 Implementations based on HNSW 24

4 A Classified Ad Retrieval Tool 28
4.1 Architecture 28
4.2 Process 32
4.3 Applications of the Tool 33
4.4 Examples 34

5 Experiments with HNSW 38
5.1 Goal 38
5.2 Datasets 38
5.3 Queries 39
5.4 Results 40

6 Conclusions 45

7 Bibliography 47

A Appendices 49
A.1 Text Encoder 49
A.2 Image Encoder 51
A.3 Helper Library 54
A.4 Shared Context Library 56
A.5 Main Code 59

List of figures

Figure 1.1 Example of a classified ad. 10

Figure 2.1 Transformers Architecture. 14
Figure 2.2 CNN Architecture. 14
Figure 2.3 Illustration of HNSW idea 17

Figure 3.1 Create Index Example 25
Figure 3.2 Search Index Example 26

Figure 4.1 Project Architecture 31
Figure 4.2 UML Architecture 32
Figure 4.3 Image result set example - Hand Holding iPhone. 36
Figure 4.4 Image result set example 2 - Phones with Home Screen being
Shown. 36
Figure 4.5 Image result set example 3 - Note 11 Phones being Shown
by Reflection. 37

List of Abreviations

CNN – Convolutional Neural Network
LSTM – Long Short-Term Memory
RNN – Recurrent Neural Network
HNSW – Hierarchical Navigable Small World
IVFADC – Inverted File with Asymmetric Distance Computation

1
Introduction

This dissertation describes a family of methods, called staged vector
stream similarity search methods, or briefly SV S, to help address the vector
stream similarity search problem, defined as: “Given a (high-dimensional)
vector q and a time interval T , find a ranked list of vectors, retrieved from
a vector stream, that are similar to q and that were received in the time
interval T”. The key observation is that SVS does not depend on having the
full set of vectors available beforehand, but it adapts to the vector stream as
the vectors are received. SVS generates a sequence of sets of indexed vectors
and uses the indices to implement approximated nearest neighbor search over
the vector stream.

Figure 1.1: Example of a classified ad.

An instance of this problem arises in the context of a classified ad retrieval
tool, where sellers can post classified ads, as in Figure 1.1, and buyers can
search for products. The tool would combine text and content-based image
retrieval (HAMEED; ABDULHUSSAIN; MAHMMOD, 2021; LI; YANG; MA,
2021), since product descriptions contain text and images. It might use separate
high-dimensional vectors, created using Deep Learning techniques, to represent
the text and images of an ad. Alternatively, the tool might transform the text
and the images (or, in fact, any other type of media) of an ad into a single
high-dimensional vector, as in cross-modal retrieval techniques (PEREIRA et
al., 2014; ZENG; YU; OYAMA, 2020). In either case, the challenge lies in

Chapter 1. Introduction 11

implementing approximated nearest neighbor search over high-dimensional
vectors (JOHNSON; DOUZE; JEGOU, 2021; JéGOU; DOUZE; SCHMID,
2011; YANG et al., 2020). A second difficulty that the tool must face lies in
that the set of classified ads is dynamic, in the sense that sellers continuously
create new ads, often at a high rate, and ads may be short-lived, either because
the product was sold, or because the seller withdraw the ad, or simply because
the ad became obsolete for some reason. Hence, in conjunction, these two
observations indeed lead to vector stream similarity search.

The dissertation first describes SVS. Briefly, it proposes to use a main
memory cache C to temporarily store the vectors as they are received from
the vector stream. When C becomes full or a timeout occurs, the current stage
terminates and the vectors in C are indexed and stored in secondary storage.
The net result is a sequence of indexed sets of vectors, each set covering a
specific time interval. Hence, SVS is incremental, in the sense that it does not
depend on having the full set of vectors available beforehand, but it adapts to
the vector stream, and it can cope with an unlimited number of vectors.

Then, the dissertation presents two implementations of SVS: one is
based on IVFADC - “Inverted File with Asymmetric Distance Computation”
(JéGOU; DOUZE; SCHMID, 2011), and is called staged IVFADC ; and another
is based on HNSW – “Hierarchical Navigable Small World” graphs (MALKOV;
YASHUNIN, 2020), as implemented in Redis1, and is called staged HNSW.
IVFADC and HNSW were chosen since they are well-known approximated
vector similarity search methods.

Next, the dissertation describes two sets of experiments to assess the
implementations. The experiments with staged IVFADC adopt the database
and query descriptors from the INRIA Holidays images (JEGOU; DOUZE;
SCHMID, 2008), and estimate the overhead of staged IVFADC against a non-
staged implementation of IVFADC. The set of experiments with staged HNSW
use a test dataset constructed from real data, and provides a more realistic
comparison between a staged and a non-staged implementation.

Finally, to test SVS in practice, the dissertation includes a description
of a proof-of-concept implementation of a classified ad retrieval tool based on
the staged HNSW implementation to index the vector stream.

SVS was first introduced in (PINHEIRO et al., 2023). This dissertation
clarifies the description of SVS, provides additional details about staged IV-
FADC and related experiments, expands the experiments with staged HNSW,
and details the proof-of-concept implementation.

1https://redis.io

Chapter 1. Introduction 12

The rest of the dissertation is organized as follows. Chapter 2 introduces
background concepts and summarizes related work. Chapter 3 briefly summa-
rizes some concepts used in the dissertation and reviews related work. Chapter
4 describes the tool used in this dissertation. Chapter 5 describes the exper-
iments and compares the results. Finally, Chapter 6 presents the conclusions
and directions for future research.

2
Background and Related Work

This section briefly summarizes some concepts used in the dissertation
and reviews related work. It first covers neural network architectures to create
vector representations of text and images used in the dissertation. Then, it
reviews vector indexing methods, libraries and search engines, concluding with
online vector similarity search methods.

2.1
Transformers

The Transformer is a model architecture eschewing recurrence and in-
stead relying entirely on an attention mechanism to draw global dependen-
cies between input and output. The architecture features an encoder-decoder
structure, where the encoder is composed of a stack of identical layers. Each
layer has two sub-layers. The first is a multi-head self-attention mechanism,
and the second is a simple, position-wise fully connected feed-forward net-
work. A residual connection is employed around each of the two sub-layers,
followed by layer normalization. That is, the output of each sub-layer is
LayerNorm(x+Sublayer(x)), where Sublayer(x) is the function implemented
by the sub-layer itself. To facilitate these residual connections, all sub-layers
in the model, as well as the embedding layers, produce outputs of the same
dimension.

The decoder is also composed of a stack of identical layers. In addition
to the two sub-layers in each encoder layer, the decoder inserts a third sub-
layer, which performs multi-head attention over the output of the encoder
stack. Similar to the encoder, residual connections are employed around each
of the sub-layers, followed by layer normalization. Then the the self-attention
sub-layer in the decoder stack is modified to prevent positions from attending
to subsequent positions. This masking, combined with fact that the output
embeddings are offset by one position, ensures that the predictions for position
i can depend only on the known outputs at positions less than i (VASWANI
et al., 2017).

2.2
Convolutional Neural Networks.

Convolutional Neural Networks (CNNs) are feedforward networks in
that information flow takes place in one direction only, from their inputs

Chapter 2. Background and Related Work 14

Figure 2.1: Transformers Architecture.

to their outputs. Just as artificial neural networks (ANN) are biologically
inspired, so are CNNs. The visual cortex in the brain, which consists of
alternating layers of simple and complex cells, motivates their architecture.
CNNs architectures consists of convolutional and pooling (or subsampling)
layers, which are grouped into modules. Either one or more fully connected
layers, as in a standard feedforward neural network, follow these modules.
Modules are often stacked on top of each other to form a deep model. Figure 2.2
illustrates the simplest design of the CNN architeture. Here an image is input
directly to the network, and this is followed by several stages of convolution
and pooling. Thereafter, representations from these operations feed one or
more fully connected layers. Finally, the last fully connected layer outputs the
class label.

Figure 2.2: CNN Architecture.

Chapter 2. Background and Related Work 15

2.3
Vector Indexing Methods, Libraries, and Search Engines

2.3.1
Offline Vector Similarity Search

Indexing Methods. Similarity search on large scale, high dimensional
datasets is an essential feature of several Deep Learning applications (BEN-
GIO; COURVILLE; VINCENT, 2013). Indeed, such applications represent
objects as high-dimensional vectors and use vector similarity search to find
relevant objects.

However, an exhaustive search of a set of nearest neighbors can be pro-
hibitively expensive (BEYER et al., 1999) and traditional indexing strategies
do not fare much better (JéGOU; DOUZE; SCHMID, 2011). Several algo-
rithms (DATAR et al., 2004; GIONIS et al., 1999; MUJA; LOWE, 2009) tried
to tackle the time complexity problem by looking for the nearest neighbor,
with high probability instead of an exact search. However, storing the indexed
vectors in the main memory still posed a serious limitation for large volumes
of data.

The approach proposed in (JéGOU; DOUZE; SCHMID, 2011) circum-
vents these memory constraints by storing a short code in memory, obtained
through product quantization, instead of the original vectors. This results in
a time and memory-efficient solution for indexing vectors and performing an
approximate nearest neighbor search. The basic idea is to cluster the vectors
and use each cluster centroid to index all vectors that belong to that cluster. In
particular, IVFADC (JéGOU; DOUZE; SCHMID, 2011) is an access method
based on product quantization that has been implemented and successfully
tested over billions of vectors. An implementation of product quantization that
takes advantage of GPUs was also reported in (JOHNSON; DOUZE; JEGOU,
2021).

In more detail, IVFADC uses two quantizers, called a coarse quantizer
and a product quantizer, and a set of inverted lists to index and query vectors.
The coarse quantizer is used to determine which inverted list L each vector v

should be added to, and the residual is passed through the product quantizer
to generate the shortcode that is stored in L, together with the identifier of
v. IVFADC is asymmetric because a query vector q is not quantized by the
product quantizer. The coarse quantizer of q is used to determine which set of
at most w inverted lists should be searched, and the distances between residuals
and shortcodes are directly computed. The k nearest neighbor vectors are then
returned. Note that w and k are parameters of the query, and the search is not

Chapter 2. Background and Related Work 16

exhaustive, since only the entries in the selected inverted lists are searched.
IVFFlat is a simplified version of IVFADC, which only uses the coarse

quantizer and thereby has a faster index construction and requires less storage
space. Furthermore, if the query vector comes from the vector dataset, IVFFlat
can achieve a 100% recall.

In another direction, Malkov et al. (MALKOV; YASHUNIN, 2020)
proposed the Hierarchical Navigable Small World – HNSW index for the
approximate k-nearest neighbor search based on navigable small-world graphs
with controllable hierarchy. The motivation behind HNSW is to improve the
NSW model search complexity, which can be done through the analysis of the
routing process. This process is divided in two phases: “zoom-out” and “zoom-
in”. A greedy algorithm starts in the “zoom-out” phase from a low degree node
and traverses the graph simultaneously increasing the node’s degree until the
characteristic radius of the node links length reaches the scale of the distance
to the query. However, before this happens, the average degree of a node can
stay relatively small, which leads to an increased probability of being stuck in
a distant false local minimum.

To adress this HNSW incrementally builds a multi-layer structure con-
sisting of a hierarchical set of proximity graphs (layers) for nested subsets of
the stored elements. The ideia is to separate the links according to the length
scale into different layers and then search in a multilayer graph, as seen in
Figure 2.3. In this only a needed fixed portion of the connections for each ele-
ment is evaluated, independently of the networks size, allowing a logarithmic
scalability.

Chapter 2. Background and Related Work 17

Figure 2.3: Illustration of HNSW idea

HNSW starts a search by randomly selecting an entry node from the top
layer, then greedily traversing the graph to find the closest neighbor nodes to
the entry node. After that, it continues to explore from the next layer using
the found closest neighbors from the previous layer as new candidate nodes,
repeating this process in each layer. In each step a list of k items is maintained.
This list is updated by evaluating the neighborhood of the closest previously
non-evaluated node in the list, until every node is evaluated. Here, HNSW
exhibits its advantage compared to NSW algorithms, it allows discarting the
candidates for evaluation that are further from the query than the furthest
element in the list, thus avoiding bloating of search structures.

HNSW performs very well even on a large dataset, and can obtain a
higher speedup than a quantization-based algorithm. When compared to NSW,
it presents a complexity scaling not worse than logarithmic and outperforms
NSW at any dataset size. Comparing it with product quantization based
algorithms, it can achieve much higher accuracy, while offering a massive
advance in search speed and much faster index construction, even though it
requires significantly more RAM. It is important to note that HNSW spends
a relatively long time building neighbor graphs. Graph storage is another
bottleneck when the dataset is too large (FU et al., 2019).
Libraries. Several libraries have been implemented that offer vector indexing
methods. They differ in the methods and the similarity metrics supported, as
well as whether they are open source or not, offer a Python interface, and are
stand-alone or run on a cluster, as summarized in Table 2.1.

Chapter 2. Background and Related Work 18

FAISS1 is an open-source Python library developed at Meta that offers
several indexing methods and similarity metrics, including IVFADC and
IVFlat. FAISS also has a multi-GPU implementation. ScaNN2 is a similar
library developed at Google. NGT3 - Neighborhood Graph and Tree for
Indexing High-dimensional Data was developed at Yahoo and implements a
specific indexing method, with (NGTQ) or without quantization (NGT), with
different similarity metrics.
Search Engines. Yang et al. (YANG et al., 2020) described PASE, a scheme
for extending the index type of PostgreSQL that supports similarity vector
search. PASE is used in an industrial environment and offers, among other
options, IVFFlat and HNSW. The authors argued that IVFFlat is better for
high-precision applications, such as face recognition, whereas HNSW performs
better in general scenarios including recommendations and personalized adver-
tisements. Milvus4 is another example of a vector database offering similarity
search. It supports, among others, IVFFlat and HNSW. Weaviate5 is an open-
source vector search engine that stores both objects and vectors, allowing for
combining vector search with structured filtering with the fault-tolerance and
scalability of a cloud-native database, all accessible through GraphQL, REST,
and various language clients. Qdrant6 and Elastic7 are other examples of vector
search engines.
Summary. Table 2.1 summarizes the main features of the vector indexing
libraries and search engines mentioned in this brief review. A detailed com-
parison can be found at ANN-Benchmarks8, a benchmarking environment for
approximate nearest neighbor search algorithms.

Chapter 3 describes staged implementations based on IVFADC and
HNSW, while Chapter 5 assesses the overhead of the staged implementations
against non-staged, equivalent baselines.

2.3.2
Online Vector Similarity Search

Methods for batch similarity search of vectors were designed to cover
the scenario where the complete set of vectors is known a priori. By contrast,

1https://github.com/facebookresearch/faiss/wiki/
2https://github.com/google-research/google-research/tree/master/scann
3https://morioh.com/p/8c38367453ae
4https://milvus.io/docs/index.md
5https://weaviate.io
6https://qdrant.tech
7https://www.elastic.co/what-is/vector-search
8http://ann-benchmarks.com/index.html

Chapter 2. Background and Related Work 19

Table 2.1: A comparison of vector indexing libraries and search engines.

Tool Open Source Multiple
Similarity Metrics Quantization

FAISS Y Y* Y
ScaNN Y Y* Y
NGT Y Y* Y
PASE Y Y Y
Milvus Y Y Y
Weaviate Y Y
Qdrant Y Y
Elastic Y Y

(*) No support for cosine similarity.

methods for online similarity search of vectors were introduced to overcome
this limitation.

Xu et al. (XU; TSANG; ZHANG, 2018) addressed the problem of
creating quantization methods for databases that evolve. They described an
online product quantization (online PQ) model that incrementally updates
the quantization codebook to accommodate the incoming streaming data.
Furthermore, the online PQ model supports both data insertions and deletions
over a sliding window.

Liu et al. (LIU et al., 2020) also proposed an online, optimized product
quantization model to dynamically update the codebooks and the rotation
matrix.

Yukawa and Amagasa (YUKAWA; AMAGASA, 2021) proposed a
method for updating the rotation matrix using SVD-Updating, which can
update the singular matrix using low-rank approximations. By using SVD-
Updating, instead of performing multiple singular value decompositions on a
high-rank matrix, the authors showed how to update the rotation matrix by
performing only one singular value decomposition on a low-rank matrix.

SVS follows a much simpler strategy. It generates a sequence of sets
of indexed vectors, stores the indexes generated at each stage in secondary
memory, and uses the stored indexes to process approximated nearest neighbor
search over the high-dimensional vectors.

3
The Family of Staged Vector Stream Similarity Search Meth-
ods

This section briefly summarizes the methods utilized in this dissertation.
It first presents the Staged Vector Stream Similarity Search methods and its
algorithms, then it describes implementations based on IVFADC and finishes
with Implementations based on HNSW.

3.1
Staged Vector Stream Similarity Search Methods

As a baseline, one may consider any vector similarity search method
adapted to vector streams. Algorithm 1 summarizes, in pseudocode, the essence
of a non-staged ingestion of a stream of vectors V (see Table 3.1 for the
CreateIndex, Read, Clock, AdjustIndex, and Store procedures).

Algorithm 1 Non-staged ingestion of a stream of vectors V

1: procedure NS
2: CreateIndex(I)
3: repeat
4: Read(V ; v)
5: t← Clock
6: AdjustIndex(v, t, I)
7: Store((v, t))
8: until shutdown
9: end procedure

The exact details of an implementation of Algorithm 1 naturally depend
on the index method chosen. However, independently of the method adopted,
the index will grow unbounded since there is no limit on the number of vectors
to be processed (recall that the vectors come from a stream). This is one of
the problems that should be avoided.

The family of staged vector stream similarity search methods, or briefly
SVS, refers to similarity search methods for vector streams with the following
characteristics. SVS uses a main memory cache C to store the vectors as they
are received from the vector stream. When C becomes full, or a timeout occurs,
the current stage terminates and the vectors in C are indexed and stored in
secondary storage. The net result is a sequence of indexed sets of vectors, each
set covering a specific time interval. Hence, SVS does not depend on having
the full set of vectors available beforehand, and it can cope with an unlimited
number of vectors.

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 21

Table 3.1: SVS basic operations and auxiliary procedures.

Type Operation
Basic Ingestion of a stream of vectors, including indexing and

storing the vectors in secondary storage
Basic Retrieve vectors by similarity, and rank the retrieved vec-

tors
Basic Delete a specific vector, given its identifier
Basic Merge time-adjacent indexes, if the indices become sparse
Aux Clock returns the current wall clock value
Aux Read a new vector from the stream
Aux AddCache adds a newly read vector to the cache
Aux CreateIndex creates a new index
Aux AdjustIndex updates the index to register a vector
Aux Store moves data to secondary storage
Aux RetrieveVectors performs an approximated nearest

neighbor search to retrieve all vectors similar to a given vector

Table 3.1 lists the SVS basic operations and auxiliary procedures. Mem-
bers of the SVS family differ basically on the exact vector indexing scheme
they use. However, Pinheiro et al. (PINHEIRO et al., 2023) discussed two
broad alternatives:

– incremental, when the index I is incrementally constructed, in main
memory, as the vectors are added to the cache.

– deferred, when the index I is constructed, in main memory, at the end
of each stage using all vectors in the cache.

In either case, I is persisted in secondary storage when the stage ends, and
reinitialized for the next stage. This dissertation concentrates on the deferred
alternative.

Algorithm 2 is a highly simplified description of the Ingestion operation
in pseudocode, for the deferred alternative. It uses the auxiliary procedures as
follows. When the cache becomes full, or a timeout occurs, CreateIndex is
executed to create an index, I, required to index the vectors in C; Store
stores, in secondary storage, I with the time interval T it covers. Store also
moves to secondary storage each vector v in the cache C with the timestamp
t when v was read.

To summarize, the main characteristics of Algorithms 1 and 2 are:

NS – Non-staged ingestion of a stream of vectors (Algorithm 1):

– Incrementally constructs a single index for all vectors in the stream.
– The overall cost is dominated by the cost of adjusting the index,

since the number of vectors in the stream is not bounded.

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 22

ST – Staged ingestion of a stream of vectors (Algorithm 2):

– At the end of each stage, constructs an index for the vectors in the
cache.

– At each stage, the cost of adjusting the index is bounded.
– At the end of each stage, the overhead is not negligible, since an

index must be created using the vectors in the cache.
– At each stage, the index is specific to the vectors in the cache.

Finally, Algorithm 3 is again a highly simplified description of the
Retrieve operation in pseudocode. Briefly, the Retrieve operation receives
as input a query vector q and a time interval T and performs an approximated
nearest-neighbor search over the stored vectors. For each index I whose interval
intersects T, RetrieveVectors uses I to perform an approximated nearest
neighbor search to retrieve from secondary storage all vectors indexed by I that
are similar to q and whose timestamp falls in T , returning a list LI of all such
vectors. It combines the partial results in a single list L. Finally, it ranks the
vectors in L by the distance to q and by timestamp. The Retrieve operation
may also search the cache, if its time interval intersects T (not represented in
Algorithm 3 for simplicity).

Algorithm 2 Staged ingestion of a stream of vectors V

1: procedure ST(timeout)
2: C ← ∅ ▷ cache
3: tb ← Clock
4: repeat
5: Read(V ; v) ▷ read v from stream V
6: t← Clock
7: AddCache((v, t), C)
8: e← (Clock− tb) ▷ cache elapsed time
9: if C is full or e > timeout then

10: CreateIndex(C; I)
11: for each (v, t) ∈ C do
12: AdjustIndex(v, I)
13: Store((v, t))
14: end for
15: T ← (tb, Clock) ▷ time interval
16: Store((I, T))
17: C ← ∅
18: tb ← Clock
19: end if
20: until shutdown
21: end procedure

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 23

Algorithm 3 Retrieval of a ranked list of vectors L, given a query vector q
and a time interval T

1: procedure RET(q, T)
2: L← ∅
3: for each index I that covers T do
4: RetrieveVectors(q, I; Lc)
5: L← L ∪ Lc

6: end for
7: Rank L by similarity to q and by timestamp
8: Return the ranked list
9: end procedure

3.2
Implementations based on IVFADC

IVFADC, outlined in Section 2.3, with some adjustments, would provide
an implementation of the non-staged ingestion (see Algorithm 1). CreateIn-
dex would construct a codebook I upfront from a learning set V0 of vectors
(Jegou et al. (JéGOU; DOUZE; SCHMID, 2011) used for the experiments a
learning set with 100,000 images extracted from Flickr). AdjustIndex would
then index each vector v in the stream against I, which reduces in IVFADC
to finding the nearest centroid vc in the coarse quantizer to v, using Euclidean
distance, codifying the residual r = vc − v with the product quantizer into a
code q(r), and adding the ID of v and code q(r) to the inverted list associated
with vc.

However, since the number of vectors in the stream is unknown, there is
no limit on the size of the inverted lists that IVFADC uses to keep the indexed
vector IDs and codes. Therefore, the inverted lists could be replaced by keeping
the indexed vectors in a database. In fact, this is how PASE (YANG et al.,
2020) implements IVFFlat in PostgreSQL.

IVFADC would also be an alternative to implement the staged Inges-
tion operation. At the end of each stage, CreateIndex would construct a
different codebook I using the vectors in the cache, rather than using a train-
ing set. Then, AdjustIndex would index each vector v in the cache, that is,
it would find the nearest centroid vc in the coarse quantizer to v, using Eu-
clidean distance, codifying the residual r = vc − v with the product quantizer
into a code q(r), and adding the ID of v and code q(r) to the inverted list
associated with vc. However, contrasting with the discussion of the non-staged
IVFADC, the size of the inverted lists is bounded, since it would depend on
the size of the cache. Finally, Store would move the lists and the codebook
to secondary storage. This implementation would use different codebooks in
each stage, and would avoid the overhead of online product quantization meth-

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 24

ods. The disadvantage would be the overhead of constructing a new codebook
at each stage, which might be reduced by sampling the vectors used in the
clustering algorithm.

To summarize, the main characteristics of the IVFADC alternatives for
the Ingestion operation are:

IVFADC-NS – IVFADC implementation of non-staged ingestion:

– Uses a fixed codebook, built upfront.
– Uses IVFADC to incrementally index all vectors in the stream.
– The overall cost is dominated by the cost of updating the inverted

lists, since the codebook is fixed and created upfront from a training
set of vectors.

– The inverted lists grow unbounded.

IVFADC-ST – IVFADC implementation of staged ingestion:

– At the end of each stage, constructs a different codebook and the
inverted lists for the vectors in the cache.

– At the end of each stage, the overhead is not negligible, since a
codebook and inverted lists are created for the vectors in the cache.

– At each stage, the codebook is specific to the vectors in the cache,
which might increase recall.

3.3
Implementations based on HNSW

Redis 1 stands for Remote Dictionary Server. It is possible to use the
same data types as in the local programming environment but on the server
side. Similar to byte arrays, Redis strings store sequences of bytes, including
text, serialized objects, counter values, and binary arrays.

Data is often unstructured, which means that it isn’t described by a
well-defined schema. There are many examples of unstructured data like texts,
images, videos and others. An approach to dealing with unstructured data is
to vectorize it. This means to map unstructured data to a flat sequence of
numbers. Such a vector represents the data embedded in an N-dimensional
space. Given a suitable machine learning model, the generated embeddings
can encapsulate complex patterns and semantic meanings inherent in data. It
is possible to use Redis as a vector database allowing to store vectors and the
associated metadata within hashes or JSON documents, retrieve vectors and
perform vector similarity searches

1https://redis.io

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 25

Each item within Redis has a unique key. All items live within the Redis
keyspace. They can be scanned in the Redis keyspace via the SCAN command.
SCAN returns a cursor position, allowing to scan iteratively for the next batch
of keys until the cursor value 0 is reached. With that, other data structures
(e.g., hashes and sorted sets) can be used as indexes, however the application
would need to maintain those indexes manually. Redis can be turned into a
document database by allowing you to declare which fields are auto-indexed.

The example in Figure 3.1 shows an FT.CREATE command that creates
an index with some text fields, a numeric field (price), and a tag field
(condition). The text fields have a weight of 1.0, meaning they have the
same relevancy in the context of full-text searches. The field names follow
the JSONPath notion. Each such index field maps to a property within the
JSON document.

Figure 3.1: Create Index Example

As soon the FT.CREATE command is executed, the indexing process
runs in the background. In a short time, all JSON documents should be indexed
and ready to be queried. After an index is created, Redis Stack automatically
indexes any existing, modified, or newly created JSON documents stored in
the database.

For existing documents, indexing runs asynchronously in the background,
so it can take some time before the document is available. Modified and
newly created documents are indexed synchronously, so the document will be
available by the time the add or modify command finishes. To validate that, you
can use the FT.INFO command, which provides details and statistics about
the index. Of particular interest are the number of documents successfully
indexed and the number of failures.

To search the index for JSON documents, the FT.SEARCH command
can be used. It allows any attribute defined in the SCHEMA to be searched. For
example, Figure 3.2 uses a query to search for items with the index “bicycle”.

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 26

Figure 3.2: Search Index Example

More advanced techniques of searching can be used as well, like KNN.
KNN is a foundational algorithm that aims to find the most similar items
to a given input. The KNN algorithm calculates the distance between the
query vector and each vector in the database based on the chosen distance
function, the options are: L2 - Euclidean distance between two vectors, IP -
Inner product of two vectors and COSINE - Cosine distance of two vectors.

It then returns the K items with the smallest distances to the query
vector. These are the most similar items. Then KNN part of the query searches
for the three nearest neighbors. The distance to the query vector is returned
as vector_score. The results are sorted by this score.

With the template for the query in place, all query prompts can be
executed in a loop by passing the vectorized query prompts over. If the cosine
distance or the Euclidean distance are used as the metric, the items with the
smallest distance are closer and, therefore, more similar to the query. If the
inner product is used as the metric, the items with maximum inner product are
more similar to the query. Then, loop over the matched documents and create
a list of results that can be converted into a table to visualize the results.

Redis would provide implementation alternatives for the Ingestion
operation, along the lines of Section 3.2, as follows (the FLAT alternative
will be used as a baseline in Chapter 5):

FLAT – Exhaustive search implementation:

– Uses Redis, with the “FLAT” option (no indexation) and Euclidean
distance, to store the full set of vectors. In this option Redis will
create the indexes by brute force.

Chapter 3. The Family of Staged Vector Stream Similarity Search Methods 27

HNSW-NS – HNSW implementation of non-staged ingestion:

– Uses Redis, with the “HNSW” option, which is an implementation
of efficient and robust approximate nearest neighbor search using
Hierarchical Navigable Small World graphs, and Euclidean distance,
to store and index the full set of vector.

HNSW-ST – HNSW implementation of the staged ingestion:

– At the end of each stage, uses Redis, with the “HNSW” option
and Euclidean distance, to store and index the set of vectors in the
cache.

4
A Classified Ad Retrieval Tool

This chapter outlines a proof-of-concept classified ad retrieval tool1 based
on the staged HNSW implementation introduced in Section 3.3 to index the
vector streams.

The tool is structured into a main module and three auxiliary modules.
The main module is responsible for controlling the task flow between the
auxiliary modules and offers a user interface that permits indicating the dataset
to be used. The auxiliary modules are a text encoder, an image encoder, and a
database. Both the text and the image encoders divide the process of handling
data into two steps: the ingestion step and the indexing step. Each step is
executed in different servers.

The first section describes the architecture of the tool, followed by its
operating process. Then, some use cases and examples are provided to better
understand how the tool works.

4.1
Architecture

4.1.1
Technologies Adopted

Multiple resources were used to build the classified ad retrieval tool. How
they work together is explained in subsection 4.1.2, after they are detailed in
this section.

Python 2 is a high-level, dynamic, interpreted, modular, cross-platform,
object-oriented programming language. As it is a relatively user-friendly syn-
tax language, it has gained popularity among professionals in the technology
industry who are not specifically programmers, such as engineers, mathemati-
cians, data scientists, researchers and others. One of its biggest attractions is
that it has a large number of libraries, both native and third-party, making it
very widespread and useful in a wide variety of sectors within web development,
and also in areas such as data analysis, machine learning and AI.

The Numpy library 3 provides a large set of library operations and func-
tions that help programmers easily perform numerical calculations. These types

1Available at https://github.com/BrunoFMSilva/projeto-final-multimodal-clustering
2https://www.python.org
3https://numpy.org

Chapter 4. A Classified Ad Retrieval Tool 29

of numerical calculations are widely used in tasks such as: Machine Learning
Models, Image Processing and Computer Graphics, and Mathematical tasks.

The Pandas library 4 is a Python library for data analysis. It is open
source and is free to use. Pandas is built based on two of Python’s most famous
libraries: matplotlib, for data visualization, and NumPy, for mathematical op-
erations, being a union of these libraries, and allowing many of the matplotlib
and NumPy methods to be accessed with less effort. This library is known for
its high productivity and performance and its popularity derives from the fact
that importing and analyzing data is much more user-friendly.

Docker 5 is a containerization technology for creating and using Linux
machines (containers). Docker is an extremely lightweight virtual machine-like
tool, but it is not actually a virtual machine. It uses (containers) which have a
different architecture, allowing greater portability and efficiency. The container
excludes virtualization and switches the process to Docker. Additionally, con-
tainers offer greater flexibility for creating, deploying, copying and migrating
a container from one environment to another.

FastAPI 6 is a modern and high-performance Web framework for building
APIs with Python. Its main characteristics are:

– Speed, APIs developed with FastAPI have high performance, to the
point of being compared with APIs developed with more consolidated
technologies.

– Intuitiveness, the framework source code was entirely developed using
Python’s type hints feature, this allows you to spend less time debugging
the code.

– Lightness, therefore, was entirely designed to be user-friendly, meaning
that much less time is spent reading the documentation

– Robustness, in which the developed code is already ready for production,
so it is not necessary to make any changes to then put the developed
applications live

– Automatic generation of documentation

Redis 7 is a relational database focused on high performance. Its main
characteristic is the agility with which it accesses and stores information,
largely due to its operating structure. It offers a set of versatile in-memory
data structures that enable easy creation of various custom applications.

4https://pandas.pydata.org
5https://www.docker.com
6https://fastapi.tiangolo.com
7https://redis.io

Chapter 4. A Classified Ad Retrieval Tool 30

Redis’ main use cases include caching, session management, PUB/SUB, and
classifications as described in Chapter 3.

4.1.2
Structure

Python was used as the main programming language because of its ver-
satility and friendly syntax. Combined with it, Numpy and Pandas offered the
necessary set of mathematical functions and operations in order to manipulate
the models used in the embeddings and providing the analysis of the data gen-
erated by these models. These mathematical functions are used to calculate
the distance between each row in the vectors during the process of indexing.

To create the structure of the application an approach using containers
was adopted. These set of containers were built using Docker, due to more or-
ganization and less configuration issues related to execution of the application.
With these resources set, FastAPI was used to create the graphical interface,
since it is a Web Framework to build API’s with Python, allowing interactivity
between the user and the Tool, managing the text encoder, the image encoder
and the database. At last, the database used was Redis which is a relational
database that allows different types of customization, like cache, session man-
agement, PUB/SUB and ratings. The PUB/SUB requisitions are fundamental
in the writing of the index and the properties of the relational database ensure
that written data is not lost due to any internal factor, only if the database is
destroyed.

Figure 4.1 describes with more details the behavior of the Tool’s archi-
tecture. The Tool has the folder “app” containing all the information related
to the application and the necessary files to execute it, like the containers
configuration, the necessary libraries and the environment variables.

Chapter 4. A Classified Ad Retrieval Tool 31

Figure 4.1: Project Architecture

Inside the “app” folder many submodules can be observed. Submodule
“dl_models” is responsible for storing the models used to process the data
sent by the user, converting them to a 768-dimensional vector. Two different
models are stored here, one for text encoding and other for image encoding.
Their python programs can be seen in Code 1 and Code 2, respectively. The
“input” submodule is responsible for storing the data that is entered into
the application, containing each of the samples of the dataset. The “output”
submodule served as the basis for executing a test that involved pre-processing
the input vectors.

The “routers” submodule presents the routes that the application can
take when it is already running, allowing it to access the indexing or search
part. The “services” submodule displays the services available for the appli-
cation, the text file represents the text encoder, the image file represents the
image encoder and the performance_analysis file aims to evaluate the perfor-
mance of the indexing and search. Finally, we have three files: helper, Code 3,
which effectively contains the index creation method. This is called within the
text encoder, thus improving readability and reducing code coupling; The main
file, Code 5, is responsible for creating the Web application; shared_context is

Chapter 4. A Classified Ad Retrieval Tool 32

responsible for making the connection to the Redis database, which can be seen
in Code 4. Its methods are used throughout the tool, as the database plays
a fundamental role in maintaining its structure. It also computes the start of
the api, the logging process, load the necessary models in order to encode the
input data and the general variables utilized in other modules. The Tool also
presents input queries in order to measure its performance and output queries
related to the analysis of each metric calculated by the database.

Figure 4.2 describes the UML diagram that represents how this archi-
tecture is structured, showing in detail its components and the connections
between them. In addition to indicating which components are related to the
previously mentioned structures, where the FastAPI block corresponds to the
main structure, the text_encoder block corresponds to the text encoder and
the Redis block corresponds to the Database.

Figure 4.2: UML Architecture

4.2
Process

The tool workflow can be divided into two steps: an ingestion step and
an indexing step. When the user inserts data that need to be analyzed the
application loads the data and starts each step.

Chapter 4. A Classified Ad Retrieval Tool 33

The ingestion step runs on the MacBook Pro server equipped with 14
core-GPUs. It uses the Fast API to read the ads from the input files, where
each ad has a key, a name, a brief textual description, and an image. The text
and image data are then distributed to two queues, corresponding to their data
types. When a queue is filled up, the corresponding embeddings are created
and exported in a Parquet file. This file type was chosen because of its being
strongly typed and having a colunar format which allows a faster reading
process and strongly decreases the chance of losing data when reading it. The
use of GPUs considerably reduced the time it took to create the embeddings;
on average, 36 embeddings were created per second – 20 text embeddings and
16 image embeddings.

The indexing step runs on the PC server with a large amount of main
memory to support Redis appropriately. Redis reads the Parquet files and
computes the HNSW indices for the embeddings. Therefore, the text and image
modules have the same process of operation with some minor differences. The
most notable of them is the model used in the ingestion step to create the
embbedings of the input data.

On average, it took 6 minutes to generate each index; the image em-
bedding indexing took longer than the text embedding indexing, because the
image embeddings were larger than the text embedding.

Following the staged strategy with deferred indexing, the tool buffered
250,000 ads before encoding and storing their text and images.

Finally, to facilitate the experiments, the tool allows the user to test
different configurations by varying the embedding dimensions, the type of
the indices – “flat” or “HSNW”, the distance metrics adopted, and some
optimization parameters, such as the construction of the indices in parallel
and the amount of memory used.

4.3
Applications of the Tool

The users of this tool are data analysts from companies that deal directly
with a large flow of advertisements daily. The analyst, needing to understand
the nature and behavior of the data that is in transit in the continuous
flow, performs several processes in order to identify the properties of these
advertisements. However, due to the enormous volume of ads present in this
flow, it becomes extremely exhausting to carry out these analyzes in real time.
Therefore, a tool capable of capturing a large number of advertisements and
allowing them to be observed at a fixed time becomes extremely useful.

With that said, the tool presented in this dissertation aims to facilitate

Chapter 4. A Classified Ad Retrieval Tool 34

the data analysis process that analysts need to carry out in their daily lives.
This facilitation process starts with searching for specific ads or ad sets. In the
tool, the search occurs using keywords related to the scope of the advertisement
itself, making it more user-friendly. Furthermore, as it is possible to configure
the number of results that the tool returns to the user, the user can search
for specific advertisements, checking their existence in the original database or
making comparisons with large volumes of data that are more similar to the
advertisement. wanted. For example, you can check if any cell phone model
is being advertised on the original platform. The tool would return the ads
most similar to the one requested, including their description. With these
descriptions, it becomes possible to check whether that set of data is coherent
or presents any irregularities. Which, in extreme cases, could even mean an
indication of fraud.

Another interesting factor in using the tool presented as an analysis
mechanism is the fact that duplicate ads are identified in the original database,
but this duplication can occur either due to inconsistencies with the database
itself or it can identify sellers who are creating multiple advertisements that
have the same item and the same description, in order to optimize the sales
time of that product.

Finally, this tool can also be used as an ad filter, as when searching
for specific keywords it is possible to identify ads that are being placed in the
database with inappropriate names or inappropriate descriptions, which allows
these ads to be excluded, up to banning those users who are exhibiting this
inappropriate behavior, through other processes outside the tool.

4.4
Examples

As an example of text retrieval, suppose the user wants to find the top 3
ads most similar to the ad “Vendo Motorola E7. Vendo Motorola E7, Três
meses de uso com nota fiscal, acompanha capinha e película de vidro”
(“Sell Motorola E7. Sell Motorola E7, three months of use, with invoice,
and cover and glass protection cover”). The tool returned:

1. “Motorola e7 muito conservado. Vendo Motorola e7 com 4 meses de
uso nota fiscal e tudo”
(“Motorola e7 in good conditions. Sell Motorola e7 with 4 months of
use invoice and everything”).

2. “Motorola E7 semi novo na caixa. Vendo celular Motorola E7 na caixa
no valor de 700.00 4 meses de uso”

Chapter 4. A Classified Ad Retrieval Tool 35

(“Motorola E7 almost new in the box. Sell Motorola E7 in the box for
700.00 4 months of use”).

3. “Motorola E7 só hoje. Vendo esse Motorola E7 valor 500 reais .ele
acompanha. Carregado original Fone de ouvido original Nota fiscal
e caixa. Ele vai fazer 8 meses de uso. Motivo da venda *****.
ZAP.******** ”
(“Motorola E7 only today. Sell Motorola E7 for 500 reais together with.
Original charger Original earphone invoice and box. It will be 8 months
old. Reason *****. ZAP.********”).

In another example of text retrieval, the ad searched was “iPhone 13
pro max 128gb Dourado lacrado e com 1 ano de garantia.” (“iPhone 13
pro max 128gb Gold sealed and with 1 year warranty.”). The tool returned:

1. “iPhone 13 Pro max 128gb Aparelho novo Lacrado 1 ano de
garantia Apple Aceito troca por outros iPhones Divido até 12x no
cartão.”
(“iPhone 13 Pro max 128gb New device Sealed 1 year Apple
warranty I accept exchanges for other iPhones Split up to 12x on card”).

2. “13 pro max lacrado 128 GB iPhone 13 pro max 128GB lacrado
não aceito troca, somente venda !! $6.700 a vista ou 7.437,00 em 12x no
cartão.”
(“13 pro max sealed 128 GB iPhone 13 pro max 128GB sealed I
do not accept exchanges, sale only !! $6,700 in cash or 7,437.00 in 12
installments on the card.”)

3. “iPhone 13 pro max 128gb Dourado lacrado E COM 1 ANO
DE garantia Fazemos em até 12 vezes A vista tem desconto não
entregamos!”
(“iPhone 13 pro max 128gb Gold sealed and with 1 year warranty
We deliver in up to 12 installments Cash has a discount we do not
deliver!”)

As an example of image retrieval, suppose the user wants to find the top
10 ads most similar to an image. Figure 4.3 presents this scenario by showing
an image of a hand holding an iPhone on the left and the search results on the
right. The tool returned:

– Image 1: the image searched occurs in the first position since it obviously
had the highest similarity in the database;

Chapter 4. A Classified Ad Retrieval Tool 36

– Images 2 to 4: the dark coloration of the phone was the most relevant
fact in the similarity factor;

– Images 5 and 6: the hand holding the phone was considered as one of the
most important factors;

– Images 7 to 8: both these factors were considered relevant.

Figure 4.3: Image result set example - Hand Holding iPhone.

In another example of image retrieval, Figure 4.4 presents a scenario
where an image of a phone in its home screen is shown. The tool returned
multiple phones, half IOS and half Android, with their home screen also being
shown. In addition 3 out of 10 images had extra information with it, which
consisted in a hand holding the phones and a charger.

Figure 4.4: Image result set example 2 - Phones with Home Screen being
Shown.

Following the last example, Figure 4.5 presents a scenario where an image
of a Note 11 is shown. The tool returned in 7 out of 10 images Note 11 phones,
one being reflected in the screen of the other phone, and 6 out of 10 were also
phones held by hand, being two reflected.

Chapter 4. A Classified Ad Retrieval Tool 37

Figure 4.5: Image result set example 3 - Note 11 Phones being Shown by
Reflection.

5
Experiments with HNSW

In order to explore the performance of the Classified Ad Retrieval Tool
a business dataset was used. This dataset presented a large amount of varied
data related to classified ads, which means that the data that composed the
main dataset had ads who were similar in a general view but unique in their
own perspective. Both of this factors were crucial in the division and analysis
presented further in this Section because these factors provided a way for
the tool to group the ads and identify its similarities. But in order to limit
and analise the data only a portion of the dataset was used, which contained
information about different types of eletronic devices, in specific mobile phones.

5.1
Goal

The experiments reported in this section are split into two parts: text
analysis considering 50k until 1MM instances and image analysis considering
250k images. These analyses describe experiments to assess the performance
of HNSW-ST, the HNSW implementation of the staged ingestion of a stream
of vectors with deferred indexing, specifically to:

– Build cost: evaluate the cost of building the HNSW index, for various
dataset sizes.

– Query cost: evaluate the cost of processing a set of queries using HNSW-
ST.

– Search quality: evaluate the mean average precision and mean average
recall of processing a set of queries using HNSW-ST.

5.2
Datasets

The experiments used data collected from a Brazilian online classified
ads company, as follows.

Daily, there is an average of 444k approved ads (about 5/sec) entering the
platform. There are three main verticals: Real Estate, Vehicle, and Goods.
The experiments target Goods ads, focusing on Electronics > Telephony &
Cellphones (5.89% of approved ads).

Suppose that an ad is a pair A = (T, I), where T is the text description
and I is an image associated with the text. For each ad A = (T, I), we created
two embeddings, ET and EI , such that:

Chapter 5. Experiments with HNSW 39

– ET , the text embedding, is a 768-dimensional vector that represents T .

– EI , the image embedding, is a 1,000-dimensional vector that represents
I.

To create the text embeddings, we used the transformer “sentence-
transformers/ paraphrase-multilingual-mpnet-base-v2”1 which is based on
BERT with the pre-trained weights. This is a sentence paragraph model that
maps sentences and paragraphs of 512 chars max length to a 768-dimensional
dense vector space. To create the image embeddings, we used the convolu-
tional neural network (CNN) “MobileNet_V2”2 with the pre-trained weights
“IMAGENET1K_V1”. One of its main characteristics is the small number of
parameters that guarantees high performance. Also, the images are prepro-
cessed with scale adjusts, normalization, and one-hot encoding labels.

We then created 7 datasets:

– text embeddings datasets: 6 datasets with the text embeddings of ap-
proximately 50k, 100k, 250k, 500k, 750k, and 1MM ads, collected
from 2022/06/01 to 2022/07/10. We will denote such datasets as 50k-
TE,...,1MM-TE (“TE” stands for “text embeddings”).

– image embeddings dataset: one dataset, which we will refer to as 250k-IE,
with the image embeddings of the same 250k ads.

The experiments to assess index build cost used all 6 text embeddings datasets
(Table 5.1) and the image embeddings dataset (Table 5.5) whereas the exper-
iments to assess query cost and search quality used the 1MM-TE and 250k-IE
datasets (the other tables in this section).

5.3
Queries

The experiments with the text embeddings datasets adopted 10 text
embeddings, Q1, ..., Q10, to play the role of queries, randomly selected from
the 1MM-TE dataset. For each query Qi, the relevant vectors were taken as
the top-10 text embeddings retrieved by Redis with the “flat” option from the
1MM-TE dataset, which amounts to the 10 vectors closest to Qi, in Euclidean
distance, since Redis, with the “flat” option performs a full dataset scan.

Likewise, the experiments with the image embeddings dataset adopted
10 image embeddings, P1, ..., P10, to play the role of queries, randomly selected
from the 250k-IE dataset, and created the set of relevant vectors as before.

1https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
2https://pytorch.org/hub/pytorch_vision_mobilenet_v2/

Chapter 5. Experiments with HNSW 40

5.3.1
Hardware and Software Setup

The embeddings were generated on a MacBook Pro with macOS Ventura
13.4, an Apple M1 Pro 8-core processor CPU and 14-core GPU, with 16 GB
of RAM and 500 GB of SSD.

Redis was run on a PC server with OS GNU/Linux Ubuntu 16.04.6 LTS,
a quad-core processor Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz, with 64
GB of RAM and 1TB of SSD.

HNSW-ST was simulated by dividing each dataset into batches. For each
batch, Redis was used to create an HNSW index for the vector embeddings of
the ad texts and another HNSW index for the vector embeddings of the main
ad image. The experiments divided each dataset into 5 batches.

5.3.2
Baselines

The first baseline, called FLAT, was implemented with Redis with the
“flat” option (no index) and Euclidean distance and applied to the non-
partitioned dataset. The reduction in query processing time, obtained by
creating the HNSW index, was then measured against the query processing
time of FLAT.

The second baseline was taken as HNSW-NS, as explained in Section 3.3,
and applied to the non-partitioned dataset.

5.3.3
Metrics

The experiments adopted as metrics the total indexing time, the total
query processing time, the mean average recall (as in Section 3.2), and the
mean average precision.

5.4
Results

We first present the results for the text embeddings datasets and then
those for the image embeddings dataset. To avoid repetition, we postpone a
combined discussion of all results to the next subsection.

To evaluate the cost of building the HNSW index, we used all text
embeddings datasets and randomly partitioned each one into 5 batches of equal
size. Table 5.1 shows the time spent on ingesting the vectors and building the
indices in Redis (recall that the FLAT baseline does not build an index) and
is organized as follows:

Chapter 5. Experiments with HNSW 41

– The lines correspond to the various dataset sizes.

– Several columns correspond to the HNSW-ST simulation:

– Column “Batch size” shows the batch size, which corresponds to
the cache size.

– Columns “Batch 0” through “Batch 4” show the time Redis took
to ingest and build the HNSW index for the vectors in a given batch.

– Column “All batches” shows the sum of the batch times.

– Column “HNSW-NS” corresponds to the HNSW-NS baseline and
shows the time Redis took to ingest and build the HNSW index for
all vectors in a given dataset.

To assess query cost, precision, and recall, we used the 1MM-TE dataset,
randomly partitioned into 5 batches of equal size.

Table 5.2 shows the query processing times and is organized as follows
(the last column, labeled “Avg”, discards the outlier values min and max):

– Line “FLAT (k=10)” corresponds to the FLAT baseline and indicates
the time Redis took when adopting no index to retrieve the first k=10
vectors closest to Qi, using Euclidean distance, from the 1MM-TE
dataset.

– Line “HNSW-NS (k=10)” corresponds to the HNSW-NS baseline and
indicates the time Redis took when adopting the HNSW index to retrieve
the first k=10 vectors closest to Qi, using Euclidean distance, from the
1MM-TE dataset.

– for i = 0, ..., 4, line “HNSW-ST batch i (k=4)” corresponds to
the staged HNSW simulation and indicates the time Redis took when
adopting the HNSW index to retrieve the first k=4 vectors closest to Qi,
using Euclidean distance, from the 200,000 vectors in Batch i.

Table 5.3 shows the mean average precision@k, for k = 1, 5, 10, and is
organized as follows:

– Lines labeled “HNSW-NS” correspond to the HNSW-NS baseline, that
is, to process each query Qi using Redis with HNSW over the full dataset
with 1,000,000 vectors.

– Lines labeled “HNSW-ST batches” correspond to the staged HNSW
simulation, that is, to processing each query Qi using Redis with HNSW
over each batch with 200,000 vectors, keeping the k=4 first vectors and
merging the results.

Chapter 5. Experiments with HNSW 42

Table 5.4 shows the mean average recall@k, for k = 1, 5, 10, and is
similarly organized.

Finally, Tables 5.5, 5.6 and 5.7 present the results for the image em-
beddings dataset. They are organized as the tables for the text embeddings
datasets, except for Table 5.5, which shows the indexing times only for the
250k-IE dataset.

Table 5.1: Indexing times (in ms) for various dataset and batch sizes (text-
only).

Dataset size Batch size Batch 0 Batch 1 Batch 2 Batch 3 Batch 4 All batches HNSW-NS
50,000 10,000 7,374 7,883 7,388 7,333 7,226 37,204 97,376

100,000 20,000 16,231 15,348 13,251 14,859 13,912 73,601 201,870
250,000 50,000 68,378 63,417 67,307 63,645 103,408 366,155 536,274
500,000 100,000 188,794 252,109 155,201 159,594 105,520 861,218 1,242,132

1,000,000 200,000 244,318 234,918 233,393 232,553 234,731 1,179,913 2,128,172

Table 5.2: Query processing times in ms with the 1MM-TE dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg
FLAT (k=10) 3.41 0.27 0.29 0.26 0.27 0.29 0.28 0.27 0.31 0.27 0.28
HNSW-NS (k=10) 0.12 0.05 0.09 0.05 0.07 0.09 0.08 0.06 0.14 0.07 0.08
HNSW-ST batch 0 (k=4) 0.08 0.04 0.07 0.04 0.05 0.07 0.06 0.05 0.09 0.05 0.06
HNSW-ST batch 1 (k=4) 0.07 0.04 0.06 0.04 0.05 0.06 0.05 0.04 0.08 0.05 0.05
HNSW-ST batch 2 (k=4) 0.07 0.04 0.05 0.03 0.04 0.05 0.05 0.04 0.08 0.04 0.05
HNSW-ST batch 3 (k=4) 0.07 0.04 0.05 0.03 0.04 0.05 0.05 0.04 0.08 0.04 0.05
HNSW-ST batch 4 (k=4) 0.07 0.04 0.05 0.03 0.04 0.05 0.05 0.03 0.08 0.04 0.05

Table 5.3: Precision values of the query experiments with the 1MM-TE dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg

HNSW-NS
precision@1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision@5 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
precision@10 0.50 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

HNSW-ST
precision@1 1.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.50
precision@5 0.40 0.40 0.60 0.20 0.40 0.40 0.60 0.40 0.60 1.00 0.50
precision@10 0.50 0.50 0.60 0.40 0.30 0.40 0.60 0.30 0.50 0.80 0.49

Table 5.4: Recall values of the query experiments with the 1MM-TE dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg

HNSW-NS
recall@1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
recall@5 0.10 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.46
recall@10 0.50 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94

HNSW-ST
recall@1 0.10 0.00 0.10 0.00 0.00 0.10 0.00 0.10 0.00 0.10 0.05
recall@5 0.20 0.20 0.30 0.10 0.20 0.20 0.30 0.20 0.30 0.50 0.25
recall@10 0.50 0.50 0.60 0.40 0.30 0.40 0.60 0.30 0.50 0.80 0.49

Table 5.5: Indexing times (in ms) for image dataset and batch sizes (image-
only).

Dataset size Batch size Batch 0 Batch 1 Batch 2 Batch 3 Batch 4 All batches HNSW-NS
250,000 50,000 29,094 29,370 29,522 29,577 29,532 118,209 199,813

Chapter 5. Experiments with HNSW 43

Table 5.6: Precision values of the query experiments with the 250k-IE dataset.

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Avg

HNSW-NS
precision@1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision@5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision@10 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 0.99

HNSW-ST
precision@1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
precision@5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.98
precision@10 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.90 1.00 0.90 0.97

Table 5.7: Recall values of the query experiments with the 250k-IE dataset.

Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Avg

HNSW
recall@1 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10
recall@5 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50
recall@10 1,00 1,00 1,00 1,00 1,00 1,00 0,90 1,00 1,00 1,00 0,99

HNSW batches
recall@1 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10
recall@5 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,40 0,50 0,50 0,49
recall@10 1,00 1,00 0,90 1,00 1,00 1,00 1,00 0,90 1,00 0,90 0,97

5.4.1
Discussion

The results obtained for HNSW over the text and image embeddings
datasets corroborate the results obtained with the IDFADC implementations.

Recall that the baseline HNSW-NS computed the index for full datasets,
whereas HNSW-ST computed a separate index for each batch, which is much
faster. Indeed, the sum of the times to ingest and index the vectors for all
batches (column labeled “All batches” in Tables 5.1 and 5.5) is roughly half
of the time to ingest and index the full set of vectors (column labeled “HNSW-
NS” in Tables 5.1 and 5.5). Furthermore, if we compare the ingestion time of
HNSW-NS with the slowest batch, considering a parallel ingestion scenario,
we obtain at least a 6-fold speed-up.

Observing Table 5.2, note that the query processing times vary slightly
from batch to batch. Also, note that the query processing times using HNSW
are about 3.5x faster than using the “flat” option (no index). The query
processing times using the HNSW batches in parallel are between 4.7x and
6.2x faster than using the “flat” option. It is important to stress that, since
k=4 for the batches, processing the HNSW batches in parallel resulted in
5× 4 = 20 vectors that were sorted by score and filtered to obtain the top 10
vectors.

Finally, as for precision and recall, the results of the experiments with
the 1MM-TE dataset (the 1MM text embeddings dataset) show that HNSW-
ST, the staged implementation, achieved about half of the performance of
the HNSW-NS baseline, on average (column “Avg” of Tables 5.3 and 5.4).
Again, a possible reason for the decrease in search quality would be that the
partitioning and sampling make the data too sparse, which gets accentuated at
lower values of R. By contrast, the results of the experiments with the 250k-IE

Chapter 5. Experiments with HNSW 44

dataset (the 250k image embeddings dataset) show that HNSW-ST achieved
roughly the same performance as the HNSW-NS baseline, on average (column
“Avg” of Tables 5.6 and 5.7).

To summarize, the experiments with real data and HNSW suggest that
the staged implementation does not incur significant overhead, and can achieve
equivalent search quality. But again the staged implementation scales to vector
streams of unbounded length, whereas a non-staged implementation does not.

6
Conclusions

The main contribution of this dissertation was a family of algorithms,
called staged vector stream similarity search – SVS, to dynamically index a
stream of high-dimensional vectors and facilitate similarity search. SVS does
not depend on having the full set of vectors available beforehand, but adapts
to the vector stream.

SVS provides an elegant solution to the vector stream similarity search
problem that does not depend on updating the underlying vector index, which
is usually expensive, as pointed out in the background and related work section.
Indeed, the original contribution of the dissertation stems from the observation
that a stream of vectors that become obsolete over time requires an approach
different from static vector indexing methods or updating such data structures.

The dissertation discussed two sets of experiments to assess the perfor-
mance of SVS. The first set of experiments used an IVFADC implementation
and the same setup as in (JéGOU; DOUZE; SCHMID, 2011), and the second
set adopted an HNSW implementation over real data. These experiments sug-
gested that the SVS implementations do not incur significant overhead and
achieve a search quality close to non-staged implementations. Moreover, SVS
can support unbounded vector streams.

The dissertation concluded with a brief description of a proof-of-concept
implementation of a classified ad retrieval tool, based on Jina and Redis with
HNSW. The tool allows retrieving different classified ads, by text or image, in a
stream of classified ads vectors provided by the user in the graphical interface.
It also permits different configurations by varying the embedding dimensions,
the type of the indices, the distance metrics adopted, and some optimization
parameters.

As future work, we first plan further experiments with datasets of
increasing sizes, of several million vectors, to quantify how IVFADC-ST and
IVFADC-NS scale, and with an implementation that would query across the
different sets of vectors created at each stage in parallel and would vary the
number of vectors retrieved from each stage to achieve the desired recall.

We also plan to conduct further experiments with the proof-of-concept
retrieval tool, using much larger datasets collected from the classified ad
platform and larger sets of realistic queries. Other types of datasets, unrelated
to classified ads, and in different languages are also being considered to expand
even further the capabilities of the tool.

Chapter 6. Conclusions 46

A closer look at some query examples also revealed that the ad used to
create the first query Q1 was duplicated multiple times in the dataset. Then,
after a quick validation, it was clear that the seller submitted different ads,
which were copies of each other. Thus, the first ten vectors retrieved were from
these copies with an Euclidean distance equal to 0. This suggests deduplicating
the ads before constructing the test datasets.

7
Bibliography

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, IEEE, v. 35, n. 8, p. 1798–1828, 2013.

BEYER, K. et al. When is “nearest neighbor” meaningful? In: SPRINGER.
International conference on database theory. [S.l.], 1999. p. 217–235.

DATAR, M. et al. Locality-sensitive hashing scheme based on p-stable distri-
butions. In: Proceedings of the twentieth annual symposium on Com-
putational geometry. [S.l.: s.n.], 2004. p. 253–262.

FU, C. et al. Fast approximate nearest neighbor search with the navigating
spreading-out graph. Proc. VLDB Endow., VLDB Endowment, v. 12, n. 5,
p. 461–474, jan 2019. ISSN 2150-8097.

GIONIS, A. et al. Similarity search in high dimensions via hashing. In:
Proc. 25th International Conference on Very Large Data Bases. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999. p. 518–529.
ISBN 1558606157.

HAMEED, I. M.; ABDULHUSSAIN, S. H.; MAHMMOD, B. M. Content-
based image retrieval: A review of recent trends. Cogent Engineering,
Cogent OA, v. 8, n. 1, p. 1927469, 2021.

JEGOU, H.; DOUZE, M.; SCHMID, C. Hamming embedding and weak
geometric consistency for large scale image search. In: Computer Vision
– ECCV 2008. [S.l.: s.n.], 2008. p. 304–317.

JOHNSON, J.; DOUZE, M.; JEGOU, H. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, IEEE Computer Society, Los
Alamitos, CA, USA, v. 7, n. 03, p. 535–547, jul 2021. ISSN 2332-7790.

JéGOU, H.; DOUZE, M.; SCHMID, C. Product quantization for nearest
neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, v. 33, n. 1, p. 117–128, 2011.

LI, X.; YANG, J.; MA, J. Recent developments of content-based image retrieval
(cbir). Neurocomputing, v. 452, p. 675–689, 2021. ISSN 0925-2312.

LIU, C. et al. Online optimized product quantization. In: 2020 IEEE In-
ternational Conference on Data Mining (ICDM). [S.l.: s.n.], 2020. p.
362–371.

MALKOV, Y. A.; YASHUNIN, D. A. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Trans.
Pattern Anal. Mach. Intell., IEEE Computer Society, USA, v. 42, n. 4, p.
824–836, apr 2020. ISSN 0162-8828.

Chapter 7. Bibliography 48

MUJA, M.; LOWE, D. G. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), v. 2, n. 331-340, p. 2, 2009.

PEREIRA, J. C. et al. On the role of correlation and abstraction in cross-modal
multimedia retrieval. Transactions of Pattern Analysis and Machine
Intelligence, IEEE, v. 36, n. 3, p. 521–535, March 2014. ISSN 0162-8828.

PINHEIRO, J. et al. Indexing high-dimensional vector streams. In: Proceed-
ings of the 25th International Conference on Enterprise Information
Systems. [S.l.: s.n.], 2023. v. 1.

VASWANI, A. et al. Attention is all you need. In: GUYON, I. et al. (Ed.).
Advances in Neural Information Processing Systems. [S.l.]: Curran
Associates, Inc., 2017. v. 30.

XU, D.; TSANG, I. W.; ZHANG, Y. Online product quantization. IEEE
Transactions on Knowledge and Data Engineering, v. 30, n. 11, p.
2185–2198, 2018.

YANG, W. et al. Pase: Postgresql ultra-high-dimensional approximate nearest
neighbor search extension. In: Proc. 2020 ACM SIGMOD International
Conference on Management of Data. [S.l.: s.n.], 2020. p. 2241–2253.

YUKAWA, K.; AMAGASA, T. Online optimized product quantization for
dynamic database using svd-updating. In: Database and Expert Systems
Applications. [S.l.: s.n.], 2021. p. 273–284.

ZENG, D.; YU, Y.; OYAMA, K. Deep triplet neural networks with cluster-cca
for audio-visual cross-modal retrieval. ACM Trans. Multimedia Comput.
Commun. Appl., Association for Computing Machinery, New York, NY,
USA, v. 16, n. 3, 2020. ISSN 1551-6857.

A
Appendices

The appendix describes the main codes utilized in the classified Ad
Retrieval Tool, showing in depth what each step is responsible for executing
within the tool.

A.1
Text Encoder

Code 1: Text Encoder

1 import sys
2 from time import sleep
3 from redis. exceptions import ConnectionError
4 import app. shared_context as sc
5 from app. helper import create_index
6

7

8 def run ():
9 queue_id = int(sys.argv[1]) if len(sys.argv) > 1 else 0

10 queue_name = f"{sc. QUEUE_TXT }_{ queue_id }"
11 sc. api_logger .info(f" consuming from redis streams : {

queue_name }")
12 last_id_consumed = 0
13 sc. api_logger .info(" starting loop")
14 num_embeddings = 0
15 while True:
16 try:
17 raw_msg = sc. api_redis_cli .xread(count=1, streams

={ queue_name :
last_id_consumed })

18 except ConnectionError as exp:
19 print (f"... ERROR - {type(exp)} | {exp}...")
20 continue
21 if not raw_msg :
22 sc. api_logger .info(f"empty { queue_name } -

skipping ...")
23 sleep(0.5)
24 continue
25 try:
26 last_id_consumed = raw_msg [0][1][-1][0]
27 msg = raw_msg [0][1][-1][1]
28 decoded_data = msg.get("data". encode ()). decode ()

Appendix A. Appendices 50

29 except (UnicodeDecodeError , AttributeError ,
ValueError):

30 sc. api_logger .info("unicode - decode error detected
- skipping ")

31 sleep(0.5)
32 continue
33 if decoded_data == sc. START_TOKEN :
34 sc. api_logger .info("start token detected ")
35 sleep(0.5)
36 continue
37 if decoded_data == sc. END_TOKEN :
38 sc. api_logger .info("end token detected ")
39 sc. api_logger .info(f"{ num_embeddings } embeddings

inserted ")
40 sc. api_logger .info(" waiting other processes

finish ")
41 sleep(30)
42 if queue_id == sc. QUEUE_MAIN :
43 sc. api_logger .info(" creating index on redis")
44 create_index (
45 " idx_txt ",
46 sc. TEXT_DISTANCE_METRIC ,
47 " embedding ",
48 sc. TEXT_EMBEDDING_DIMENSION ,
49 "HNSW",
50 "txt ::"
51)
52 sc. api_logger .info(" erasing stream ")
53 stream_group = sc. api_redis_cli .xread(streams

={ queue_name :
0})

54 for streams in stream_group :
55 stream_name , messages = streams
56 [sc. api_redis_cli .xdel(stream_name , i[0])

for i in
messages]

57 break
58 key , sentence = decoded_data .split(sc. SEPARATOR)
59 embeddings = sc. load_txt_model (). encode (sentence [:sc.

TEXT_MAX_LENGTH])
60 sc. api_logger .info(f"key: {key} | embeddings shape: {

embeddings .shape }")
61 embeddings_bytes = embeddings . astype (sc.

TEXT_EMBEDDING_TYPE).
tobytes ()

62 # bucket = int(key) % sc. BUCKETS
63 sc. api_redis_cli .hset(

Appendix A. Appendices 51

64 f"txt ::{key}",
65 mapping ={
66 " embedding ": embeddings_bytes ,
67 "id": key ,
68 " sentence ": sentence [:sc. TEXT_MAX_LENGTH]
69 }
70)
71 num_embeddings += 1
72

73

74 if __name__ == " __main__ ":
75 sc. api_redis_cli = sc. start_queueing (manually =True)
76 sc. api_logger = sc. start_encoder_logging ()
77 run ()

A.2
Image Encoder

Code 2: Image Encoder

1 import sys
2 import pandas as pd
3 import requests as r
4 import multiprocessing as mp
5 from redis. exceptions import ConnectionError
6 from time import sleep , perf_counter
7 from pathlib import Path
8 import app. shared_context as sc
9 from app. helper import create_index , slice_dataframe

10

11

12 input_path = Path(__file__). parent . parent / "input"
13 images_path = Path(__file__). parent . parent / " images "
14

15

16 def download (idx , sdf):
17 dff = pd. read_json (sdf , orient ="split")
18 print (f"{idx}- df shape: {dff.shape}")
19

20 for i, row in dff. iterrows ():
21 list_id = row[’id’]
22 image_url = row[’image ’]
23 # downloading image
24 img_data = r.get(image_url). content
25 with open(images_path / f" image_ { list_id }.jpg", "wb")

as handler :

Appendix A. Appendices 52

26 handler .write(img_data)
27 print (f"...{i} - image downloaded | { list_id }...")
28

29

30 def parallel_download (only_missing =False):
31 cores = mp. cpu_count ()
32 df = pd. read_csv (input_path / " electronics_250k .csv")
33 print (f" original shape: {df.shape}")
34 if only_missing :
35 downloaded_images = [int(image_path .name[6:-4]) for

image_path in
images_path .glob("*.
jpg")]

36 df = df[~df["id"].isin(downloaded_images)]
37 print (f" modified shape: {df. shape}")
38 data_frames = slice_dataframe (df , cores)
39

40 procs = []
41 start_time = perf_counter ()
42 for core in range(cores):
43 serialized_df = data_frames [core]. to_json (orient ="

split")
44 proc = mp. Process (target =download , args=(core ,

serialized_df))
45 procs. append (proc)
46 proc.start ()
47

48 # complete the processes
49 for proc in procs:
50 proc.join ()
51 end_time = perf_counter ()
52 total_time = end_time - start_time
53 print (f" Process took { total_time :.4f} seconds ")
54

55

56 def run ():
57 queue_id = int(sys.argv[1]) if len(sys.argv) > 1 else 0
58 queue_name = f"{sc. QUEUE_IMG }_{ queue_id }"
59 sc. api_logger .info(f" consuming from redis streams : {

queue_name }")
60 last_id_consumed = 0
61 sc. api_logger .info(" starting loop")
62 num_embeddings = 0
63 while True:
64 try:
65 raw_msg = sc. api_redis_cli .xread(count=1, streams

={ queue_name :

Appendix A. Appendices 53

last_id_consumed })
66 except ConnectionError as exp:
67 print (f"ERROR - {type(exp)} | {exp}")
68 continue
69 if not raw_msg :
70 sc. api_logger .info(f"empty { queue_name } -

skipping ...")
71 sleep(0.5)
72 continue
73 try:
74 last_id_consumed = raw_msg [0][1][-1][0]
75 msg = raw_msg [0][1][-1][1]
76 decoded_data = msg.get("data". encode ()). decode ()
77 except (UnicodeDecodeError , AttributeError ,

ValueError) as exp:
78 sc. api_logger .info(f"ERROR - {type(exp)} | {exp}"

)
79 sc. api_logger .info(f"unicode - decode error

detected -
skipping ")

80 sleep(0.5)
81 continue
82 if decoded_data == sc. START_TOKEN :
83 sc. api_logger .info("start token detected ")
84 sleep(0.5)
85 continue
86 if decoded_data == sc. END_TOKEN :
87 sc. api_logger .info("end token detected ")
88 sc. api_logger .info(f"{ num_embeddings } embeddings

inserted ")
89 sc. api_logger .info(" waiting other processes

finish ")
90 sleep(30)
91 if queue_id == sc. QUEUE_MAIN :
92 sc. api_logger .info(" creating index on redis")
93 create_index (
94 " idx_img ",
95 sc. IMG_DISTANCE_METRIC ,
96 " embedding ",
97 sc. IMG_EMBEDDING_DIMENSION ,
98 "HNSW",
99 "img ::"

100)
101 sc. api_logger .info(" erasing stream ")
102 stream_group = sc. api_redis_cli .xread(streams

={ queue_name :
0})

Appendix A. Appendices 54

103 for streams in stream_group :
104 stream_name , messages = streams
105 [sc. api_redis_cli .xdel(stream_name , i[0])

for i in
messages]

106 break
107 key , sentence = decoded_data .split(sc. SEPARATOR)
108 filename = f" image_ {key}.jpg"
109 try:
110 embeddings = sc. encode_image (img_path = images_path

/ filename)
111 except FileNotFoundError as exp:
112 print (f"{exp}")
113 continue
114 sc. api_logger .info(f"key: {key} | embeddings shape: {

embeddings .shape }")
115 embeddings_bytes = embeddings . detach ()
116 .numpy ()
117 . astype (sc. IMG_EMBEDDING_TYPE)
118 . tobytes ()
119 # bucket = int(key) % sc. BUCKETS
120 sc. api_redis_cli .hset(
121 f"img ::{key}",
122 mapping ={
123 " embedding ": embeddings_bytes ,
124 "id": key
125 }
126)
127 num_embeddings += 1
128

129

130 if __name__ == ’__main__ ’:
131 sc. api_redis_cli = sc. start_queueing (manually =True)
132 sc. api_logger = sc. start_encoder_logging ()
133 run ()
134 # parallel_download ()

A.3
Helper Library

Code 3: Helper

1 import time
2 from functools import wraps
3 import app. shared_context as sc

Appendix A. Appendices 55

4 from redis. commands . search .field import VectorField ,
TextField , NumericField

5 from redis. commands . search . indexDefinition import
IndexDefinition , IndexType

6

7

8 def timeit (func):
9 @wraps (func)

10 def timeit_wrapper (*args , ** kwargs):
11 start_time = time. perf_counter ()
12 result = func(*args , ** kwargs)
13 end_time = time. perf_counter ()
14 total_time = end_time - start_time
15 print (f’Function {func. __name__ }{args} { kwargs } Took

{ total_time :.4f}
seconds ’)

16 return result
17 return timeit_wrapper
18

19

20 @timeit
21 def create_index (vector_field_name ,
22 # number_of_vectors ,
23 embedding_dimension ,
24 distance_metric ,
25 index_type ="FLAT",
26 index_name =" idx_txt ",
27 prefix ="*"
28):
29 fields = [
30 VectorField (
31 vector_field_name ,
32 index_type ,
33 {
34 "TYPE": " FLOAT32 ",
35 "DIM": embedding_dimension ,
36 " DISTANCE_METRIC ": distance_metric ,
37 # " INITIAL_CAP ": number_of_vectors ,
38 }
39),
40 TextField ("id"),
41]
42 if "txt" in index_name :
43 fields . append (TextField (" sentence "))
44 sc. api_redis_cli .ft(index_name = index_name). create_index (
45 fields , definition = IndexDefinition (prefix =[prefix],

index_type = IndexType .

Appendix A. Appendices 56

HASH)
46)
47

48

49 def slice_dataframe (dff , qtd):
50 num_lines = dff.shape[0]
51 lines_per_df = num_lines // qtd
52 dfs = []
53 ctrl = 0
54 for _ in range(qtd - 1):
55 dfs. append (dff.iloc[ctrl:ctrl+ lines_per_df])
56 ctrl += lines_per_df
57 dfs. append (dff.iloc[ctrl:])
58 return dfs

A.4
Shared Context Library

Code 4: Shared Context

1 import sys
2 import redis
3 import torch
4 import logging
5 import uvicorn
6 import numpy as np
7 from PIL import Image , UnidentifiedImageError
8 from pathlib import Path
9 from fastapi . logger import logger

10 from torchvision import transforms
11 from torchvision . models . mobilenetv2 import

MobileNet_V2_Weights
12 from sentence_transformers import SentenceTransformer
13

14

15 # TODO: load values from .env file
16 # constants
17 REDIS_HOST = "redis"
18 REDIS_PORT = 6379
19

20 QUEUE_TXT = " txt_queue "
21 QUEUE_IMG = " img_queue "
22 QUEUE_MAIN = 0 # queue_id responsible to create index
23 QUEUES_AVAILABLE = 1
24 SEPARATOR = "|###|"
25 START_TOKEN = "[STA]"

Appendix A. Appendices 57

26 END_TOKEN = "[END]"
27 BUCKETS = 5
28

29 MAX_LOOPS_WITHOUT_DATA = 120 # approximate 1min
30 TEXT_MAX_LENGTH = 512
31 TEXT_EMBEDDING_DIMENSION = 768
32 TEXT_EMBEDDING_FIELD_NAME = " embedding "
33 TEXT_EMBEDDING_TYPE = np. float32
34 TEXT_DISTANCE_METRIC = "L2"
35 TEXT_INDEX_NAME = " idx_txt "
36

37 IMG_EMBEDDING_DIMENSION = 1000
38 IMG_EMBEDDING_FIELD_NAME = " embedding "
39 IMG_EMBEDDING_TYPE = np. float32
40 IMG_DISTANCE_METRIC = "L2"
41 IMG_INDEX_NAME = " idx_img "
42

43 API_PORT = 8080
44 API_HOST = "0.0.0.0"
45 API_DESCRIPTION = """
46 ## Multimodal Clustering using Product Quantization
47 """
48

49 # single instances
50 api_app = None
51 api_logger = None
52 api_redis_cli = None
53 model_txt = None
54 model_img = None
55

56

57 def start_queueing (manually =False , custom_host =" localhost "):
58 redis_client = redis.Redis(
59 host= REDIS_HOST if not manually else custom_host ,
60 port=REDIS_PORT ,
61)
62 return redis_client
63

64

65 def start_api_logging ():
66 uvicorn_logger = logging . getLogger (" uvicorn . access ")
67 logger . handlers = uvicorn_logger . handlers
68 console_formatter = uvicorn . logging . ColourizedFormatter (
69 "{ message }",
70 style="{",
71 use_colors =False)
72 logger . handlers [0]. setFormatter (console_formatter)

Appendix A. Appendices 58

73 logger . setLevel (uvicorn_logger .level)
74 return logger
75

76

77 def start_encoder_logging ():
78 encoder_logger = logging . getLogger ()
79 encoder_logger . setLevel (logging .INFO)
80 handler = logging . StreamHandler (sys. stdout)
81 handler . setLevel (logging .INFO)
82 formatter = logging . Formatter (’\%(levelname)s:\t\%(

message)s’)
83 handler . setFormatter (formatter)
84 encoder_logger . addHandler (handler)
85 return encoder_logger
86

87

88 def encode_image (img_path : Path = None ,
89 input_image : Image = None):
90 global model_img
91 # lazy loading
92 if not model_img :
93 model_img = torch.hub.load(
94 " pytorch / vision :v0.10.0",
95 " mobilenet_v2 ",
96 weights = MobileNet_V2_Weights . IMAGENET1K_V1
97)
98 model_img .eval ()
99 if not input_image :

100 try:
101 input_image = Image.open(img_path)
102 except UnidentifiedImageError as exp:
103 raise FileNotFoundError (f"... ERROR - {type(exp)}

| {exp}...")
104 preprocess = transforms . Compose ([
105 transforms . Resize (256),
106 transforms . CenterCrop (224),
107 transforms . ToTensor (),
108 transforms . Normalize (mean=[0.485 , 0.456 , 0.406], std=

[0.229 , 0.224 , 0.225])
,

109])
110 input_tensor = preprocess (input_image)
111 input_batch = input_tensor . unsqueeze (0) # create a mini -

batch as expected by the
model

112

113 if torch.cuda. is_available ():

Appendix A. Appendices 59

114 input_batch = input_batch .to("cuda")
115 model_img .to("cuda")
116

117 with torch. no_grad ():
118 output = model_img (input_batch)
119 # Tensor of shape 1000 , with confidence scores over

Imagenet ’s 1000 classes
120 # print(output [0])
121 # The output has unnormalized scores . To get

probabilities , you can run
a softmax on it.

122 embeddings = torch.nn. functional . softmax (output [0], dim=0
)

123 return embeddings
124

125

126 def load_txt_model ():
127 global model_txt
128 device = torch. device ("cuda" if torch.cuda. is_available ()

else "cpu")
129 # lazy loading
130 if not model_txt :
131 model_txt = SentenceTransformer (
132 model_name_or_path ="sentence - transformers /

paraphrase -
multilingual -mpnet
-base -v2",

133 cache_folder =str(Path(__file__). parent / "
dl_models "),

134 device =str(device),
135)
136 return model_txt

A.5
Main Code

Code 5: Main

1 import uvicorn
2 import app. shared_context as sc
3 from fastapi import FastAPI
4 from fastapi . middleware .cors import CORSMiddleware
5 from app. routers import indexing , search
6

7

8 def get_application () -> FastAPI :

Appendix A. Appendices 60

9 app = FastAPI (
10 title=" Multimodal Clustering ",
11 description =sc. API_DESCRIPTION ,
12 version ="0.0.1",
13)
14 app. include_router (indexing . router)
15 app. include_router (search . router)
16

17 origins = [
18 "http :// localhost ",
19 "http :// localhost :8080",
20 "http :// localhost :63342",
21]
22

23 app. add_middleware (
24 CORSMiddleware ,
25 allow_origins =origins ,
26 allow_credentials =True ,
27 allow_methods =["*"],
28 allow_headers =["*"],
29)
30

31 @app. on_event (" startup ")
32 def startup_event ():
33 sc. api_redis_cli = sc. start_queueing ()
34 sc. api_logger = sc. start_api_logging ()
35

36 @app.get("/ healthcheck ", include_in_schema =False)
37 def healthcheck ():
38 return {" status ": "ok"}
39

40 return app
41

42

43 sc. api_app = get_application ()
44

45

46 if __name__ == ’__main__ ’:
47 uvicorn .run(sc.api_app , host=sc.API_HOST , port=sc.

API_PORT)

	Staged Vector Stream Similarity Search Methods with an Application to Classified Ad Retrieval
	Resumo
	Table of contents
	Introduction
	Background and Related Work
	Transformers
	Convolutional Neural Networks.
	Vector Indexing Methods, Libraries, and Search Engines

	The Family of Staged Vector Stream Similarity Search Methods
	Staged Vector Stream Similarity Search Methods
	Implementations based on IVFADC
	Implementations based on HNSW

	A Classified Ad Retrieval Tool
	Architecture
	Process
	Applications of the Tool
	Examples

	Experiments with HNSW
	Goal
	Datasets
	Queries
	Results

	Conclusions
	Bibliography
	Appendices
	Text Encoder
	Image Encoder
	Helper Library
	Shared Context Library
	Main Code

